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Abstract. The two terms ‘translation’ and ‘protein syn-
thesis’ are interchangeable in describing the process
whereby the genetic code in the form of messenger RNA
(mRNA) is deciphered such that amino acids cognate with
the triplet code are joined end to end to form a peptide
chain. However, new data suggest that the initial act of
translation on newly synthesised mRNA also functions to
proofread mRNA for errors. Aberrant mRNAs detected in
this way are rapidly degraded before their encoded pro-

teins impede normal cell function. Initiation of surveil-
lance translation appears to differ from that of regular pro-
tein synthesis in three ways: (i) composition of the sub-
strate; (i1) temporal and spatial restrictions; (iii) factors
used to recruit the ribosome. This review discusses trans-
lational aspects of mRNA surveillance, primarily in the
context of the mammalian system, although much infor-
mation has come from studies in yeast and other organ-
isms.
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What errors can ribosomal scanning detect?

While errors in the DNA sequence of the genome can be
easily detected due to an inability of altered bases to cor-
rectly pair with the adjacent strand, the ability to detect er-
rors in a single-stranded messenger RNA (mRNA) ap-
pears a daunting, and perhaps impossible task. In the
nucleus many potential errors in RNA processing are
eliminated by the tight coordination of the processing and
export procedures, ensuring that mRNA export is not per-
mitted until the mRNA is correctly processed [1—4]. Two
additional errors are detected during ribosomal scanning
and result in targeted degradation of the aberrant mRNA;
the absence of a termination codon [5, 6], and the pres-
ence of a premature termination codon (PTC) [7, 8].
These processes are known as nonstop decay and non-
sense-mediated decay (NMD), respectively.

Nonstop decay

mRNAs lacking a stop codon are most likely to be pro-
duced by either inappropriate cleavage and polyadenyla-
tion during nuclear processing or by incomplete degrada-
tion of an mRNA undergoing translation [5]. The
degradation of mRNA lacking a stop codon requires the
cytoplasmic exosome with two associated factors: the het-
erotrimeric complex of Ski proteins (namely Ski2p, Ski3p
and Ski8p) and Ski7p [6]. The N terminus of Ski7p links
the exosome to the other Ski proteins [9] and is required
for cytoplasmic exosome activity. The C terminus is dis-
pensable for exosome function, and is instead required for
nonstop decay [6]. The C terminus of Ski7p has homology
to the GTPase domains of eukaryotic elongation factor
1A (eEF1A) and release factor 3 (eRF3) [10] that inter-
act with the A site of the ribosome during elongation and
termination, respectively. Nonstop decay has been lo-
calised to the cytoplasm [5], which is consistent with the
cytoplasmic localisation of Ski2p and Ski7p, as well as the
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translational requirement. The current model for nonstop
decay is as follows: in the absence of a termination codon,
the ribosome translates through the poly(A) tail and be-
comes stalled at the 3” end of the mRNA with an empty A
site. Ski7- binds to this site via its C terminus (in an anal-
ogous manner to the binding of eEF1 A or eRF3) and re-
cruits the Ski complex and cytoplasmic exosome to de-
grade the aberrant mRNA [5, 6].

Although initially discovered in yeast, nonstop decay has
also been shown to occur in mammalian cells, and since
the Ski proteins are conserved, it is likely to proceed by a
mechanism similar to that described for yeast [5, 6].

NMD

In contrast to the recent discovery of nonstop decay, NMD
was discovered in 1979, when the absence of S-globin ex-
pression [7] and reduced Ura 3 mRNA [8] were both
found to be due to the presence of nonsense codons within
the coding sequence.

Genetic mutations that are the cause of genetic diseases
and inherited cancer frequently result in NMD. For ex-
ample, 77% of mutations in BRCA1 that are associated
with breast cancer [11] and 89 % of mutations in the ATM
gene that cause ataxia telangiectasia [12] lead to prema-
ture chain termination. A notable example of the impor-
tance of mRNA surveillance in inherited genetic disease
is evident in pB-thalassaemia, characterised by defects in
the B-globin gene. The majority of PTC-generating muta-
tions in the B-globin gene are recessive due to a functional
NMD pathway. However, if a PTC occurs in the final
exon, it is immune to detection by the surveillance path-
way and a truncated protein is synthesised, resulting in a
dominantly inherited, severe dyserythropoiesis [13]. In ad-
dition to eliminating mRNAs containing PTCs generated
either as a result of DNA mutations, or by errors that oc-
cur during gene expression or DNA metabolism, NMD
also regulates the levels of specific ‘normal’ mRNAs. In-
activation of the NMD pathway has been shown to cause
global changes in hundreds of transcripts from the normal
repertoire of gene expression [14].

How is a PTC detected?

The arguments for nuclear vs. cytoplasmic NMD are dis-
cussed in detail later, and this section relates to the model
of cytoplasmic NMD. Some confusion has been generated
by the fact that mRNA can theoretically undergo cyto-
plasmic NMD while copurifying with nuclei. This is due
to the fact that the 5" end of some mRNAs can initiate
translation in the cytoplasm, while the 3’ end is still in
transit through the nuclear pore [15] (fig. 1), a phenome-
non sometimes described as nucleus-associated NMD
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[16, 17]. It is interesting to note that 60% of mRNA de-
graded by the unrelated process of RNA interference
(RNAI), a process that is totally restricted to the cyto-
plasm, also co-purifies with nuclei [18].

The current model proposes that following termination of
the initial round of translation on newly synthesised
mRNA, a posttermination scanning complex searches
mRNAs for specific ‘marker’ proteins (discussed in de-
tail below), and checks that there are no such marker pro-
teins downstream of the termination codon. If, as in
normal circumstances, this is the case, the mRNA is
released into the translatable pool. Alternatively, if a spe-
cific marker protein is detected, the termination codon
is deemed to be premature and the mRNA is degraded
[19, 20] (fig. 1).

In mammalian cells, the ‘marker’ that distinguishes a PTC
from an authentic stop codon is produced as a result of
splicing [21—-23]. Specifically, during splicing, a complex
of proteins is deposited 20—24 nucleotides upstream of
each exon-exon junction [24, 25]. Known as the exon
junction complex (EJC), this complex includes proteins
required for pre-mRNA splicing and mRNA export. The
initial complex is sequentially modified to allow nuclear
proteins to dissociate before mRNP export and proteins
required for NMD to be recruited. Four proteins (RNPSI1,
Upfl, Upf2 and Upf3) have been shown experimentally to
be capable of defining a termination codon as being pre-
mature when they are artificially tethered to the mRNA
downstream of it, and are thus candidate ‘marker’ proteins
[26, 27]. RNPSI1 is a splicing factor that is part of the EJC
[25] and serves as an anchorage point for the recruitment
of Upf2 and Upf3 [28]. The protein Upfl appears to link
the termination of translation to the downstream protein
complex, and is described in detail below. Essentially, fol-
lowing splicing, a protein complex including RNPSI re-
mains bound 20—-24 nucleotides upstream of exon-exon
junctions, and recruits other ‘marker’ proteins (Upf2 and
Upf3) that serve to define any termination codon up-
stream of this as being premature. The modified EJC (i.e.
the marker protein complex) is thought to be displaced
during ribosomal translocation, such that if a PTC is not
detected during the initial round of translation, the mRNA
joins the cellular pool of mRNA (fig. 1).

What happens following detection of a PTC?

Termination of translation occurs following recognition of
any of three stop codons by interaction of eukaryotic re-
lease factor 1 (eRF1) with the ribosome [29—32]. eRF1
catalyses peptidyl transfer RNA (tRNA) hydrolysis [33],
and this activity is enhanced by the eRF1- and ribosome-
dependent GTPase activity of eRF3 [34—-36], which
interacts with eRF1 to form a heterodimeric complex
[35—-39]. The presence of EJC proteins is probably
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Figure 1. Illustration of the current model for cytoplasmic NMD in mammalian cells.

Step 1: Cotranscriptional processing of pre-mRNA, including splicing and association of EJC components. Step 2: Export of mRNA bound
by CBC in a 5’—3’ direction, at which point CBC could initiate translation by recruiting the small ribosomal subunit. Step 3: Surveillance
translation on mRNA still associated with CBC. During this round of translation, EJC components are displaced by the ribosome. Step 4:
Following termination at an authentic stop codon, mRNA joins the translatable pool of cytoplasmic mRNA, and is bound at the 5" cap by

elF4E. Step 5: Following termination at a PTC, mRNA is degraded.

relayed to the termination complex by the protein Upfl.
Upfl is a multidomain protein demonstrating RNA bind-
ing, RNA-dependent ATPase and RNA helicase activities
[40—44]. 1t is associated with translating ribosomes in
yeast [45—47] and mammalian cells [48], and interacts
with release factors eRF1 and eRF3 [49] as well as Upf2
[50, 51] (fig. 2A).

The mechanism by which the aberrant mRNA is degraded
is not yet known for mammalian cells. In yeast it occurs
by deadenylation-independent decapping followed by 5'-
3’ exonuclease activity. Recently, human Upfl was shown
to interact with human decapping enzymes, suggesting
that degradation may occur by a similar mechanism in
mammalian cells [52].



642 L. McKendrick

How does (and why should) initiation
of surveillance translation differ from initiation
of regular translation?

The mechanism of regular translation initiation

The majority of eukaryotic translation occurs in the cyto-
plasm and is thought to be initiated by recruitment of the
40S ribosomal subunit to the inverted and methylated
guanosine cap structure at the 5” end of the mRNA by eu-
karyotic translation initiation factors (elFs), followed by
scanning of the 5’-untranslated region (5"UTR) until the
initiation codon, AUG, is recognised by Met-tRNA. At
this point the large ribosomal subunit is recruited, and
elongation occurs. Prior to mRNA recruitment, the 40S ri-
bosomal subunit is primed to initiate translation by inter-
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action with the ‘ternary complex’ (consisting of elF2
bound to GTP and Met-tRNA) and with elF3, resulting in
the formation of the 43S preinitiation complex.

This complex is then recruited to the mRNA by two more
initiation factors: eIF4G, a large, multidomain protein, of-
ten described as a scaffold protein, due to its interaction
with many different initiation factors, and elF4E, a protein
that specifically recognises the modified 5" ‘cap’ structure
of mRNAs (fig. 2B; reviewed in [53]).

Therefore, two features of elF4E enable it to direct the
43S preinitiation complex to the 5" end of mRNA:: its abil-
ity to specifically recognise the cap and its interaction
with elF4G, which in turn binds elF3. However, recent ev-
idence suggests that eI[F4E might not be unique in pos-
sessing these qualities [54—56] (fig. 2 C).

Figure 2. (4) Diagram of possible interactions during and post termination at a PTC. See main text for descriptions of proteins involved.
(B) Diagrammatic representation of the 43S preinitiation complex promoting ‘normal’ translation of cytoplasmic mRNA. The 5’ cap struc-
ture is bound by eIF4E (red), and the poly (A) tail is bound by PABP1 (purple), and both proteins interact with e[F4G (green). (C) Possi-

ble interactions during initiation of surveillance translation.
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Protein composition at the cap during the initial
round of cytoplasmic translation

In the nucleus, the cap is initally bound by the predomi-
nantly nuclear cap binding complex, CBC, a heterodimer
of 80- and 20-kDa subunits [57, 58] (CBP80 and CBP20;
fig. 1), and is required for efficient splicing, polyadeny-
lation and nuclear export of the RNA, as well as protection
against exonucleolytic digestion [57-59]. Electron mi-
croscopy data indicate that for the Balbiani ring particle in
salivary gland cells of Chironomous tentans, the CBC-
mRNA complex is not only intact during export from the
nucleus, but also maintained on ribosomes associated with
the endoplasmic reticulum [15].

Further evidence that CBC may recruit the ribosome in an
analogous manner to elF4E has come from interaction
studies in both yeast [54] and mammalian [56] cells,
where CBC was found in complex with eIF4G (the trans-
lation initiation factor that links cap-binding protein
elF4E with the 43S preinitiation complex [53]). Yeast
elF4G and CBP80 were shown to directly interact, and
when competition from elF4E was removed by mutation
of the eIF4E binding site on elF4G, yeast CBC could sup-
port a limited amount of translation [54]. The most com-
pelling evidence for the ability of CBC to support the ini-
tial round of cytoplasmic translation in mammalian cells
comes from the demonstration that CBC-bound cytoplas-
mic mRNA was reduced when the mRNA has a premature
termination codon [55]. Furthermore, this reduction in
CBC-bound, PTC-containing mRNA was, like NMD it-
self, dependent on ongoing translation. In these experi-
ments, mRNA associated with e[F4E was also reduced by
the presence of a PTC [55]. This is consistent with two
models: in model 1, eIF4E receives mRNA after it has un-
dergone an initial round of translation in complex with
CBC and thus receives a reduced amount of mRNA with
a PTC; in model 2, the exchange of CBC for eIF4E does
not require an initial round of translation. Instead, NMD
occurs in parallel on mRNAs bound by either eIF4E or
CBC, and with a similar efficiency of PTC detection and
mRNA degradation in each case. A role for elF4E in
NMD cannot yet be excluded, but evidence that EJC com-
ponents coimmunoprecipitate with CBC and not eIF4E
[55, 60], favours the first model. Relevant to this discus-
sion is the hypothesis that e[F4E may associate with and
promote the export of specific mRNAs [61]. This appears
to be the case for cyclin D1 [62, 63], but other pre-mR-
NAs do not detectably copurify with eIF4E, under condi-
tions that allow copurification with CBC [60].

Why should the initiation of translation make
a difference to termination?

A good question to consider at this stage is why should the
factor bound to the mRNA cap during translation initia-
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tion have any influence on the events that follow termina-
tion? The true answer is not yet known, and it is also not
known whether the same cap-binding protein that initiated
translation still remains bound to the cap by the time the
ribosome reaches the termination codon. It is known that
the poly(A)-binding protein PABP1 interacts with initia-
tion factors e[F4G [64] and elF4 B [65, 66], and by doing
so is thought to promote the synergistic effect of having
both a cap and a poly (A) tail on translational efficiency
[53, 65—67]. The translation termination factor eRF3 also
interacts with PABP1 [68] (fig. 2 A), and so could relay in-
formation from the termination complex to the both ends
of the mRNA and regulate the initiation of subsequent
rounds of translation. This linkage becomes particularly
important when the hypothesis is considered that decap-
ping constitutes the initial step of mammalian PTC-con-
taining mRNA degradation [52]. While decapping en-
zymes will remove the cap of mRNA, and expose the 5’
end to rapid degradation by exonucleases, their activity is
blocked by interaction of eIF4E with the cap [69]. This
suggests that prior to decapping, there needs to be a mod-
ification of the cap-binding proteins, such that the cap is
exposed. This remodelling could be initiated by the pro-
tein-protein interactions mentioned above that link eRF3
to e[F4G. Therefore, it is possible that different cap-bind-
ing activities of CBC and eIF4E in response to signals
from the termination complex may determine which pro-
tein allows an aberrant mRNA to be decapped and de-
graded.

Where in the cell does NMD occur?

The data presented above are all compatible with a model
of NMD that occurs during the initial round of cytoplas-
mic translation, even though this might occur while
mRNA is in transit through the nuclear pore. The argu-
ment that NMD is restricted to the cytoplasm is strength-
ened by experiments where translation and therefore
NMD of a specific mRNA was able to be controlled by
the regulated binding of iron regulatory protein (IRP) to a
hairpin-forming element in the 5UTR of the mRNA,
called the IRE [70]. IRP was shown to be localised to the
cytoplasm only and was able to stabilise reporter mRNA
with a PTC suggesting that NMD was also localised to the
cytoplasm [70]. One caveat to the method is that although
IRP appeared to be restricted to the cytoplasm, it is tech-
nically difficult to disprove that there was not a small
amount present in the nucleus also.

Also supporting cytoplasmic NMD is the localisation of
Upf proteins that are essential for NMD [45, 71-73]. Al-
though Upf3 is predominantly nuclear, export to the cy-
toplasm is required for NMD to occur [72, 73]. The cyto-
plasmic localisation of Upfl and Upf2 is also compatible
with NMD occurring during or shortly after nuclear ex-
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port[45, 71, 72]. However, more recent evidence indicates
that while the majority of Upfl is cytoplasmic, it shuttles
between cytoplasm and nucleus, such that it accumulates
in the nucleus of cells treated with leptomycin B, an in-
hibitor of the nuclear export factor CRM1 (chromosomal
region maintenance) [74]. This nuclear fraction of Upfl
appears to function in additional nuclear surveillance
events (described below), although it may also function in
intranuclear NMD [74].

One of the main arguments used to defend exclusively cy-
toplasmic NMD is the requirement for translation — an
event considered to be exclusively cytoplasmic. Chal-
lenges to the exclusively cytoplasmic nature of translation
(where isolated nuclei were demonstrated to incorporate
radiolabelled amino acids into high molecular weight ma-
terial) were not able to convince the sceptical scientific
community that nuclear translation occurred (reviewed in
[75]). However, a more recent publication by Iborra et al.
has reopened the long-standing debate [76]. These re-
searchers demonstrated translation within the nucleus of
permeabilised cells and purified nuclei using suboptimal
conditions that allowed only a few amino acids from bi-
otinylated aminoacyl tRNA precursors to become incor-
porated into the ongoing elongation of nascent peptide
chains [76]. The nuclear translation was found to be
tightly coupled with transcription, and is supported by
data showing the presence of ribosomes at the sites of
transcription, the partial nuclear localisation of various
translation factors as well as aminoacyl tRNA and the
presence of polysomes in the nuclear fraction of Dic-
tyostelium [61, 76—79].

Presumably the substrate for nuclear translation is fully
spliced mRNA, although it might be possible for a ribo-
some to recognise and bind to sequences present in introns
such that it could initiate translation downstream. How-
ever, this fanciful hypothesis would also require non-AUG
initiation and for the ribosome to know which reading
frame to choose, for which a likely mechanism cannot
easily be invoked.

There are many questions that follow the demonstration of
nuclear translation, not least whether it represents a nu-
clear mRNA proofreading step with a mechanism analo-
gous to that described above. Either of the two models for
NMD (intranuclear or cytoplasmic, but on nucleus-asso-
ciated mRNA) could explain the apparent stability of cy-
toplasmic mRNA bearing a PTC, since both models pre-
dict that surveillance occurs during the initial round of
translation, and that mRNA that escapes this proofread-
ing-linked degradation is immune to detection thereafter.
However, the demonstration that inhibition of mRNA ex-
port did not affect the extent of NMD in the nuclear frac-
tion suggests that NMD can occur in the nucleus proper
[80]. Perhaps the initial round of translation could occur
in either location, giving the cell double protection against
the production of truncated proteins.
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Other nuclear phenomena resulting from PTCs

Due to the large amount of recombination and sequence
alterations required to obtain immunoglobulin and T-cell-
receptor diversity, these transcripts appear to respond
particularly dramatically to the presence of PTCs (re-
viewed in [81]). A number of nuclear phenomena have
been demonstrated in response to the presence of a PTC
within the coding sequence of these genes, including ac-
cumulation of pre-mRNA at the sites of transcription and
nonsense-mediated altered splicing (NAS; also observed
for other RNAs) [82, 83]. The question considered here is
whether these responses are due to translation or detection
by other means, for example by disruption of sequences
required for correct splicing. One approach to differenti-
ating between these two explanations is by demonstrating
that missense mutations do not give the same phenotype.
However, certain missense mutations have been shown to
be less efficient at disrupting exonic splice enhancers than
PTCs [84], and this data has led to reevaluation of the re-
quirement of nuclear translation for some examples of
NAS (reviewed in [85]). An elegant way to demonstrate
that it is the PTC itself and not the change in sequence that
elicits the response is to create a PTC by causing a
frameshift. This is achieved by inserting extra sequence
(for example 10 bases) some distance upstream of the in-
duced PTC and controlling for the effects of the insertion
by repeating the experiment with an insertion that would
not cause a frameshift (e.g. 9 bases). This approach has
been successfully used for nonsense-mediated accumula-
tion of pre-mRNA [82] and certain examples of NAS [85],
and suggests that translation is probably responsible for
the proofreading in these cases.

It is perhaps hard to envisage how the steric problem of
translation and splicing occurring in cis are overcome,
particularly when splicing is altered 5’ to the PTC. Perhaps
the surveillance translation occurs in trans. There is little
evidence regarding the precise mechanisms by which
these processes occur, although the factor requirement ap-
pears to differ from those required for NMD [74].

Conclusion

In summary, there are a number of nuclear responses to
the presence of a PTC, which appear to involve a nuclear
translation event. In addition, aberrant mRNAs not de-
tected in the nucleus have a further chance to be proof-
read during the initial round of cytoplasmic translation
that may occur during mRNA export. The mechanism
of ribosomal recruitment to the 5" cap during these sur-
veillance translation events may involve the predomi-
nantly nuclear cap-binding complex, CBC, although a
role for the usual cap-binding translation factor, elF4E,
has not been ruled out. The precise mechanism by which
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mammalian CBC recruits the ribosome, the efficiency
of CBC-initiated translation and the mechanism for
exchange of CBC for elF4E remain exciting questions
to be answered.
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